Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Netw ; 170: 478-493, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38039685

RESUMO

While existing reconstruction-based multivariate time series (MTS) anomaly detection methods demonstrate advanced performance on many challenging real-world datasets, they generally assume the data only consists of normal samples when training models. However, real-world MTS data may contain significant noise and even be contaminated by anomalies. As a result, most existing approaches easily capture the pattern of the contaminated data, making identifying anomalies more difficult. Although a few studies have aimed to mitigate the interference of the noise and anomalies by introducing various regularizations, they still employ the objective of fully reconstructing the input data, impeding the model from learning an accurate profile of the MTS's normal pattern. Moreover, it is difficult for existing methods to apply the most appropriate normalization schemes for each dataset in various complex scenarios, particularly for mixed-feature MTS. This paper proposes a filter-augmented auto-encoder with learnable normalization (NormFAAE) for robust MTS anomaly detection. Firstly, NormFAAE designs a deep hybrid normalization module. It is trained with the backbone end-to-end in the current training task to perform the optimal normalization scheme. Meanwhile, it integrates two learnable normalization sub-modules to deal with the mixed-feature MTS effectively. Secondly, NormFAAE proposes a filter-augmented auto-encoder with a dual-phase task. It separates the noise and anomalies from the input data by a deep filter module, which facilitates the model to only reconstruct the normal data, achieving a more robust latent representation of MTS. Experimental results demonstrate that NormFAAE outperforms 17 typical baselines on five real-world industrial datasets from diverse fields.


Assuntos
Aprendizagem , Fatores de Tempo
2.
J Med Virol ; 95(12): e29252, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38078658

RESUMO

Three pandemics caused by human Betacoronavirus had broken out in the past two decades. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was one of the novel epidemic strains which caused the third pandemic, coronavirus disease 2019 (COVID-19), a global public health crisis. So far, more than millions of people have been infected. Considering the public health and economic impact of Betacoronavirus pandemic, drugs with broad-spectrum activity against these coronaviruses are urgently needed. In this study, two monoclonal antibodies targeting SARS-CoV-2 spike protein receptor-binding domain (RBD) with good neutralizing activity were used to construct a novel immunoglobulin-like bispecific antibody BI31. The neutralizing effect of BI31 against the pseudovirus and the authentic virus is better than that of its parent antibodies alone and in combination. What surprised us most was that the newly constructed bispecific antibody also had the neutralizing activity against SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV) that the parent antibodies did not have. These suggested that the BI31 can not only be developed as a therapeutic drug against COVID-19 but it could also become a broad-spectrum therapeutic antibody against Betacoronavirus.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Humanos , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2
3.
Sci Rep ; 13(1): 20806, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012220

RESUMO

Botulinum neurotoxin (BoNT) shows high lethality and toxicity, marking it as an important biological threat. The only effective post-exposure therapy is botulinum antitoxin; however, such products have great potential for improvement. To prevent or treat BoNT, monoclonal antibodies (mAbs) are promising agents. Herein, we aimed to construct a bispecific antibody (termed LUZ-A1-A3) based on the anti-BoNT/A human monoclonal antibodies (HMAb) A1 and A3. LUZ-A1-A3 binds to the Hc and L-HN domains of BoNT/A, displaying potent neutralization activity against BoNT/A (124 × higher than that of HMAb A1 or HMAb A3 alone and 15 × higher than that of the A1 + A3 combination). LUZ-A1-A3 provided effective protection against BoNT/A in an in vivo mouse model. Mice were protected from infection with 500 × LD50 of BoNT/A by LUZ-A1-A3 from up to 7 days before intraperitoneal administration of BoNT/A. We also demonstrated the effective therapeutic capacity of LUZ-A1-A3 against BoNT/A in a mouse model. LUZ-A1-A3 (5 µg/mouse) neutralized 20 × LD50 of BoNT/A at 3 h after intraperitoneal BoNT/A administration and complete neutralized 20 × LD50 of BoNT/A at 0.5 h after intraperitoneal BoNT/A administration. Thus, LUZ-A1-A3 is a promising agent for the pre-exposure prophylaxis and post-exposure treatment of BoNT/A.


Assuntos
Toxinas Botulínicas Tipo A , Botulismo , Humanos , Camundongos , Animais , Sorogrupo , Anticorpos Monoclonais/farmacologia , Modelos Animais de Doenças , Dose Letal Mediana , Botulismo/prevenção & controle
4.
Vaccine ; 2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37816654

RESUMO

Tetanus toxin (TeNT) is a protein toxin produced by Clostridium tetani bacteria, which causes hyperreflexia and rhabdomyolysis by spastic paralysis. Like botulinum neurotoxin, TeNT comprises a heavy chain (HC) and a light chain (LC) linked via an interchain disulfide bond, which include the following three functional domains: a receptor-binding domain (Hc), a translocation domain (HN), and a catalytic domain (LC). Herein, we produced and characterized three functional domains of TeNT and three types of TeNT-derived L-HN fragments (TL-HN, TL-GS-HN and TL-2A-HN), which contained L and HN domains but lacked the Hc domain. The immunological effects of these different functional domains or fragments of TeNT were explored in an animal model. Our investigations showed the TL-HN functional fragment provided the best immunoprotection among all the TeNT functional domains. The TL-HN fragment, as a protective antigen, induced the highest levels of neutralizing antibodies, indicating that it might contain some crucial epitopes. Further experiments revealed that the protective effect of TL-HN was superior to that of the THc, TL, or THN fragments, either individually or in combination. Therefore, the TL-HN fragment exerts an important function in immune protection against tetanus toxin, providing a good basis for the development of TeNT vaccines or antibodies, and could serve as a promising subunit vaccine to replace THc or tetanus toxoid (TT).

5.
Appl Microbiol Biotechnol ; 107(23): 7197-7211, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37741939

RESUMO

Tetanus toxin (TeNT) and botulinum neurotoxins (BoNTs) are neuroprotein toxins, with the latter being the most toxic known protein. They are structurally similar and contain three functional domains: an N-terminal catalytic domain (light chain), an internal heavy-chain translocation domain (HN domain), and a C-terminal heavy chain receptor binding domain (Hc domain or RBD). In this study, fusion functional domain molecules consisting of the TeNT RBD (THc) and the BoNT/A RBD (AHc) (i.e., THc-Linker-AHc and AHc-Linker-THc) were designed, prepared, and identified. The interaction of each Hc domain and the ganglioside receptor (GT1b) or the receptor synaptic vesicle glycoprotein 2 (SV2) was explored in vitro. Their immune response characteristics and protective efficacy were investigated in animal models. The recombinant THc-linker-AHc and AHc-linker-THc proteins with the binding activity had the correct size and structure, thus representing novel subunit vaccines. THc-linker-AHc and AHc-linker-THc induced high levels of specific neutralizing antibodies, and showed strong immune protective efficacy against both toxins. The high antibody titers against the two novel fusion domain molecules and against individual THc and AHc suggested that the THc and AHc domains, as antigens in the fusion functional domain molecules, do not interact with each other and retain their full key epitopes responsible for inducing neutralizing antibodies. Thus, the recombinant THc-linker-AHc and AHc-linker-THc molecules are strong and effective bivalent biotoxin vaccines, protecting against two biotoxins simultaneously. Our experimental design will be valuable to develop recombinant double-RBD fusion molecules as potent bivalent subunit vaccines against bio-toxins. KEY POINTS: • Double-RBD fusion molecules from two toxins had the correct structure and activity. • THc-linker-AHc and AHc-linker-THc efficiently protected against both biotoxins. • Such bivalent biotoxin vaccines based on the RBD are a valuable experimental design.


Assuntos
Toxinas Botulínicas Tipo A , Toxina Tetânica , Animais , Toxina Tetânica/genética , Toxina Tetânica/metabolismo , Toxinas Botulínicas Tipo A/genética , Toxinas Botulínicas Tipo A/metabolismo , Ligação Proteica , Anticorpos Neutralizantes , Vacinas de Subunidades/genética
6.
Anaerobe ; 82: 102764, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37479022

RESUMO

OBJECTIVES: The mature botulinum neurotoxin (BoNT) is a long peptide chain consisting of a light chain (L) and a heavy chain (H) linked by a disulfide bond, where the heavy chain is divided into a translocation domain and an acceptor binding domain (Hc). In this study, we further explored the biology activity and characteristics of recombinant L-HN fragment (EL-HN) composed of the L and HN domains of BoNT/E in vivo and in vitro. METHODS: Neurotoxicity of L-HN fragments from botulinum neurotoxins was assessed in mice. Cleavage of dichain EL-HN in vitro and in neuro-2a cells was assessed and compared with that of single chain EL-HN. Interaction of HN domain and the receptor synaptic vesicle glycoprotein 2C (SV2C) was explored in vitro and in neuro-2a cells only expressing SV2C. RESULTS: We found that the 50% mouse lethal dose of the nicked dichain EL-HN fragment (EL-HN-DC) was 0.5 µg and its neurotoxicity was the highest among the L-HN's of the four serotypes of BoNT (A/B/E/F). The cleavage efficiency of EL-HN-DC toward synaptosome associated protein 25 (SNAP25) in vitro was 3-fold higher than that of the single chain at the cellular level, and showed 200-fold higher animal toxicity. The EL-HN-DC fragment might enter neuro-2a cells via binding to SV2C to efficiently cleave SNAP25. CONCLUSIONS: The EL-HN fragment showed good biological activities in vivo and in vitro, and could be used as a drug screening model and to further explore the molecular mechanism of its transmembrane transport.


Assuntos
Toxinas Botulínicas Tipo A , Camundongos , Animais , Toxinas Botulínicas Tipo A/toxicidade , Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/genética , Sorogrupo , Biologia
7.
Virology ; 583: 36-44, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37104921

RESUMO

Human adenovirus type 7 (HAdV7) is commonly associated with febrile acute respiratory disease (ARD) outbreaks. We have reported that 10G12, a mouse monoclonal antibody (mAb) specifically recognizing and neutralizing HAdV7, is a promising candidate for humanization. In this study, we engineered the six variants of 10G12 with increased degree of humanization and investigated their biological activity. The humanized monoclonal antibody (mAb) 10G12-M2 was shown to retain the parental antibody's high binding affinity, specificity and potent efficacy of viral suppression. The mAb 10G12-M2 recognized a conformational neutralization epitope of the hexon protein. Complex structure-based molecular docking simulation showed that the hexon protein formed several interactions with 10G12-M2, including hydrogen bonds and salt bridges interaction. Physicochemical properties analysis of 10G12-M2 demonstrated that it is stable and desirable lead candidate. In general, 10G12-M2 had excellent biological activity after humanization combined with the potential for use in prophylactic or therapeutic applications against HAdV7.


Assuntos
Adenovírus Humanos , Anticorpos Neutralizantes , Humanos , Animais , Camundongos , Anticorpos Antivirais , Simulação de Acoplamento Molecular , Anticorpos Monoclonais Humanizados , Imunossupressores
8.
Front Immunol ; 14: 1132822, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006289

RESUMO

Background: Human adenovirus type 55 (HAdV55) has a re-emerged as pathogen causing an acute respiratory disease presenting as a severe lower respiratory illness that can cause death. To date, there is no HAdV55 vaccine or treatment available for general use. Methods: Herein, a monoclonal antibody specific for HAdV55, mAb 9-8, was isolated from an scFv-phage display library derived from mice immunized with the purified inactived-HAdV55 virions. By using ELISA and a virus micro-neutralization assay, we evaluated the binding and neutralizing activity of mAb 9-8 following humanization. Western blotting analysis and antigen-antibody molecular docking analysis were used to identify the antigenic epitopes that the humanized monoclonal antibody 9-8-h2 recognized. After that, their thermal stability was determined. Results: MAb 9-8 showed potent neutralization activity against HAdV55. After humanization, the humanized neutralizing monoclonal antibody (9-8-h2) was identified to neutralize HAdV55 infection with an IC50 of 0.6050 nM. The mAb 9-8-h2 recognized HAdV55 and HAdV7 virus particles, but not HAdV4 particles. Although mAb 9-8-h2 could recognize HAdV7, it could not neutralize HAdV7. Furthermore, mAb 9-8-h2 recognized a conformational neutralization epitope of the fiber protein and the crucial amino acid residues (Arg 288, Asp 157, and Asn 200) were identified. MAb 9-8-h2 also showed favorable general physicochemical properties, including good thermostability and pH stability. Conclusions: Overall, mAb 9-8-h2 might be a promising molecule for the prevention and treatment of HAdV55.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Camundongos , Animais , Simulação de Acoplamento Molecular , Anticorpos Monoclonais Humanizados , Anticorpos Monoclonais , Epitopos , Adenoviridae
9.
Appl Microbiol Biotechnol ; 107(10): 3205-3216, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37058230

RESUMO

Botulinum neurotoxin (BoNTs; serotypes A, B, E, and F) cause botulism disease in humans, which could be effectively treated using antitoxins. Herein, we established a novel receptor-binding domain (RBD)-based antitoxin using recombinant C terminal heavy chain (Hc) domains of BoNTs as immunogens. Immunization of horses with these recombinant Hc domains allowed the purification and digestion of IgGs from hyper-immune sera to produce high-quality and high-efficiency monovalent botulism antitoxin F(ab')2 against each BoNT (M-BATs). However, these M-BATs could not bind or neutralize other serotypes of BoNTs, and that there were no cross-protective effects among these M-BATs. This suggested the need to prepare tetravalent antitoxins to neutralize the four BoNTs simultaneously. Thus, these M-BATs were formulated into a novel tetravalent botulism antitoxin (T-BAT), in which a 10-ml volume contained 10000 IU of BoNT/A and 5000 IU of BoNT/B, BoNT/E, and BoNT/F antitoxins. The novel antitoxin preparation could prevent and treat the four mixed botulinum neurotoxins simultaneously in vivo, representing strong efficacy in an animal poisoning model. Moreover, these antibodies in T-BAT could bind the RBD, whereas conventional antitoxins based on inactivated toxins mainly bind the light chain or heavy chain translocation domain (HN) and weakly bind the important RBD in current experimental conditions. The high levels of RBD-specific novel antitoxins can efficiently bind the RBD and neutralize natural or recombinant toxins containing this RBD. The findings of the present study experimentally support the use of RBD-specific antitoxins to treat BoNT serotype A, B, E, and F-mediated botulism. This study demonstrated the concept of developing potent novel multivalent antitoxins against all BoNTs or other toxins, using the RBD of these toxins as an alternative antigen to inactivated toxins. KEY POINTS: • Antitoxins based on the receptor-binding domains of botulinum neurotoxins were made. • Novel antitoxin binds RBD; traditional antitoxin mainly binds light chain or HN domain. • A tetravalent antitoxin could prevent and treat the four mixed neurotoxins in vivo.


Assuntos
Antitoxinas , Toxinas Botulínicas Tipo A , Botulismo , Humanos , Animais , Cavalos , Antitoxina Botulínica , Botulismo/prevenção & controle , Neurotoxinas , Imunização
10.
Toxins (Basel) ; 15(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36977091

RESUMO

Botulinum neurotoxins (BoNTs) can cause nerve paralysis syndrome in mammals and other vertebrates. BoNTs are the most toxic biotoxins known and are classified as Class A biological warfare agents. BoNTs are mainly divided into seven serotypes A-G and new neurotoxins BoNT/H and BoNT/X, which have similar functions. BoNT proteins are 150 kDa polypeptide consisting of two chains and three domains: the light chain (L, catalytic domain, 50 kDa) and the heavy chain (H, 100 kDa), which can be divided into an N-terminal membrane translocation domain (HN, 50 kDa) and a C-terminal receptor binding domain (Hc, 50 kDa). In current study, we explored the immunoprotective efficacy of each functional molecule of BoNT/F and the biological characteristics of the light chain-heavy N-terminal domain (FL-HN). The two structure forms of FL-HN (i.e., FL-HN-SC: single chain FL-HN and FL-HN-DC: di-chain FL-HN) were developed and identified. FL-HN-SC could cleave the vesicle associated membrane protein 2 (VAMP2) substrate protein in vitro as FL-HN-DC or FL. While only FL-HN-DC had neurotoxicity and could enter neuro-2a cells to cleave VAMP2. Our results showed that the FL-HN-SC had a better immune protection effect than the Hc of BoNT/F (FHc), which indicated that L-HN-SC, as an antigen, provided the strongest protective effects against BoNT/F among all the tested functional molecules. Further in-depth research on the different molecular forms of FL-HN suggested that there were some important antibody epitopes at the L-HN junction of BoNT/F. Thus, FL-HN-SC could be used as a subunit vaccine to replace the FHc subunit vaccine and/or toxoid vaccine, and to develop antibody immune molecules targeting L and HN domains rather than the FHc domain. FL-HN-DC could be used as a new functional molecule to evaluate and explore the structure and activity of toxin molecules. Further exploration of the biological activity and molecular mechanism of the functional FL-HN or BoNT/F is warranted.


Assuntos
Toxinas Botulínicas Tipo A , Animais , Toxinas Botulínicas Tipo A/metabolismo , Sorogrupo , Proteína 2 Associada à Membrana da Vesícula , Neurotoxinas/metabolismo , Mamíferos/metabolismo
11.
Arch Virol ; 168(2): 60, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36629974

RESUMO

The intron-based stabilization approach is a very useful strategy for construction of stable flavivirus infectious clones. SA14-14-2 is a highly attenuated Japanese encephalitis (JE) live vaccine strain that has been widely used in China since 1989. To develop safe and effective recombinant vaccines with SA14-14-2 as a backbone vector, we constructed the DNA-based infectious clone pCMW-JEV of SA14-14-2 using the intron-based stabilization approach and acquired the rescued virus rDJEV, which retained the biological properties of the parental virus. Unexpectedly, a rescued virus strain with altered virulence, designated rHV-DJEV, was accidentally acquired in one of the transfection experiments. rHV-DJEV showed up to 105-fold increased neurovirulence compared with the SA14-14-2 parental strain. Genome sequencing showed that the inserted introns were still present in the genome of rHV-DJEV. Therefore, we think that the intron-based stabilization approach should be used with caution in vaccine development and direct iDNA immunization.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Vacinas contra Encefalite Japonesa , Humanos , Sequência de Bases , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/prevenção & controle , Genoma Viral , Íntrons , Vacinas contra Encefalite Japonesa/genética , Vacinas Atenuadas/genética
12.
Virology ; 576: 74-82, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36183498

RESUMO

Dengue virus (DENV) is a prevalent mosquito-transmitted human pathogen, causing about 100 million cases of acute dengue fever and 21,000 deaths annually worldwide. Therapeutic neutralizing antibodies against dengue virus might be effective to treat severe dengue fever. Here, we showed that human monoclonal antibody (HMAb) 9C7 bound to all four intact serotypes of DENV but not to the recombinant envelope protein, suggesting HMAb 9C7 recognized a conformational epitope of the envelope protein. Taken together our results suggested that HMAb 9C7 neutralized all four serotypes of DENV in vitro and, for DENV-1, indicated activity at the pre- and post-attachment steps in the viral life cycle. HMAb 9C7 potently protected suckling mice from lethal challenge with all four serotypes of DENV. FcγRII-mediated uptake of immune complexes and antibody-dependent enhancement at low doses of the antibody were abolished by two Leu-to-Ala (9C7-LALA) mutations or deletion of nine amino acids (9C7-9del) in HMAb 9C7 Fc. Therefore, HMAb 9C7 represented a promising prophylactic and therapeutic agent against all four serotypes of DENV.


Assuntos
Vírus da Dengue , Dengue , Humanos , Camundongos , Animais , Vírus da Dengue/genética , Anticorpos Monoclonais , Sorogrupo , Anticorpos Antivirais , Complexo Antígeno-Anticorpo/genética , Anticorpos Neutralizantes , Epitopos , Aminoácidos/genética , Proteínas do Envelope Viral/genética , Reações Cruzadas
13.
Hum Vaccin Immunother ; 18(5): 2048621, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-35435814

RESUMO

Botulinum neurotoxins (BoNTs) are the most toxic known proteins. Naturally occurring botulism in humans is caused by botulinum serotypes A, B, E, and F. Vaccination is an effective strategy to prevent botulism. In this study, a tetravalent botulinum vaccine (TBV) that can prevent serotypes A, B, E, and F was developed using the C-terminal receptor-binding domain of BoNT (Hc) as an antigen. To develop a suitable vaccine formulation, in vitro binding experiments of antigens and aluminum adjuvant in different buffers, and in vivo experiments of TBV at different antigen concentrations, were conducted. Our results showed that the optimal vaccine formulation buffer was a pH 6.0 phosphate buffer, and the suitable antigen concentration was 40 or 80 µg/ml of each antigen. A pilot-scale TBV was then prepared and evaluated for immunogenicity and stability. The results showed that TBV could elicit strong protective efficacy against each BoNT in mice, and remain effective after two years of storage at 4ºC, indicating that the preparation was stable and highly effective. Adsorption experiments also showed that the antigens could be well adsorbed by the aluminum adjuvant after 2 years of storage. Our results provide valuable experimental data supporting the development of a tetravalent botulinum vaccine, which is a promising candidate for the prevention of botulinum serotypes A, B, E, and F.


Assuntos
Toxinas Botulínicas Tipo A , Toxinas Botulínicas , Botulismo , Clostridium botulinum , Alumínio , Animais , Botulismo/prevenção & controle , Clostridium botulinum/metabolismo , Camundongos , Vacinas Combinadas
14.
J Med Virol ; 94(8): 3791-3800, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35451094

RESUMO

The emerging coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the causative agent of coronavirus disease 2019 (COVID-19), which has become a severe threat to global public health and local economies. In this study, several single-chain antibody fragments that bind to the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein were identified and used to construct human-mouse chimeric antibodies and humanized antibodies. These antibodies exhibited strong binding to RBD and neutralization activity towards a SARS-CoV-2 pseudovirus. Moreover, these antibodies recognize different RBD epitopes and exhibit synergistic neutralizing activity. These provide candidate to combination use or bispecific antibody to potential clinical therapy for COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes , Anticorpos Antivirais/uso terapêutico , Humanos , Camundongos , Testes de Neutralização , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus
15.
Toxins (Basel) ; 14(2)2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35202162

RESUMO

Clostridium botulinum produces botulinum neurotoxin (BoNT), which is the most toxic known protein and the causative agent of human botulism. BoNTs have similar structures and functions, comprising three functional domains: catalytic domain (L), translocation domain (HN), and receptor-binding domain (Hc). In the present study, BoNT/E was selected as a model toxin to further explore the immunological significance of each domain. The EL-HN fragment (L and HN domains of BoNT/E) retained the enzymatic activity without in vivo neurotoxicity. Extensive investigations showed EL-HN functional fragment had the highest protective efficacy and contained some functional neutralizing epitopes. Further experiments demonstrated the EL-HN provided a superior protective effect compared with the EHc or EHc and EL-HN combination. Thus, the EL-HN played an important role in immune protection against BoNT/E and could provide an excellent platform for the design of botulinum vaccines and neutralizing antibodies. The EL-HN has the potential to replace EHc or toxoid as the optimal immunogen for the botulinum vaccine.


Assuntos
Anticorpos Neutralizantes/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/imunologia , Botulismo/imunologia , Botulismo/prevenção & controle , Clostridium botulinum/imunologia , Neurotoxinas/toxicidade , Animais , Clostridium botulinum/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Substâncias Protetoras/administração & dosagem , Sorogrupo
16.
Virology ; 558: 49-56, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33721729

RESUMO

In tropical and subtropical countries, dengue virus (DENV) infections have been increasing; however, we still lack effective therapy. In the present study, we aimed to engineer a bispecific antibody (subsequently named LUZ-8F2-6B1), based on monoclonal antibody 6B1, which has anti DENV-1, 2, and 3 activity, and 8F2, which has anti DENV-4 activity. LUZ-8F2-6B1 displayed potent neutralization activity against four serotypes of DENV by binding to the envelop protein. In vivo, we demonstrated that LUZ-8F2-6B1 could provide protection against infection by four serotypes of DENV in a mouse model. In addition, the deletion of nine amino acids in the Fc region (LUZ-8F2-6B1-9del) completely abolished the antibody-dependent enhancement observed at lower doses of the antibody. Thus, LUZ-8F2-6B1 is a promising, safe, and effective agent for the prophylaxis and treatment of DENV infection.


Assuntos
Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Dengue/classificação , Vírus da Dengue/imunologia , Sorogrupo , Animais , Anticorpos Biespecíficos/isolamento & purificação , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , Anticorpos Facilitadores , Dengue/imunologia , Dengue/terapia , Humanos , Células K562 , Camundongos , Camundongos Endogâmicos C57BL , Testes de Neutralização , Fagocitose
17.
Neurotox Res ; 39(4): 1044-1053, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33616873

RESUMO

Botulinum neurotoxin (BoNT) is a neurotoxin produced by Clostridium botulinum in an anaerobic environment. BoNT is the most toxic protein among bacteria, animals, plants, and chemical substances reported to date. BoNTs are 150 kDa proteins composed of three major functional domains: catalytic (L domain, 50 kDa), translocation (HN domain, 50 kDa), and receptor-binding (Hc domain, 50 kDa) domains. Most studies have focused on the use of the Hc domain as an antigen because it is capable of generating robust protective immunity and contains some functional neutralizing epitopes. In the present study, we produced and characterized a recombinant L-HN fusion fragment of the parent BoNT/B (BL-HN) composed of L and HN domains with a deletion in the Hc domain (BHc). When the BL-HN protein was expressed in E. coli, it retained its stable structure and antigenicity. As a vaccine antigen, the recombinant BL-HN protein was found to induce sufficient protection against native BoNT/B in a mouse model. The BL-HN subunit vaccine could also induce a strong humoral immune response and generate sufficient neutralizing antibodies in immunized mice. Therefore, BL-HN may retain the native neurotoxin structure and critical epitopes responsible for inducing serum neutralizing antibodies. Studies of the dose-dependent immunoprotective effects further confirmed that the BL-HN antigen could provide potent protective immunity. This finding suggests that BL-HN can play an important role in immune protection against BoNT/B. Therefore, the BL-HN fusion fragment provides an excellent platform for the design of recombinant botulinum vaccines and neutralizing antibodies.


Assuntos
Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/administração & dosagem , Toxinas Botulínicas Tipo A/administração & dosagem , Vacinação/métodos , Animais , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Toxinas Botulínicas Tipo A/imunologia , Relação Dose-Resposta Imunológica , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia
18.
Toxicon ; 187: 75-81, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32889026

RESUMO

Tetanus is an acute, fatal disease caused by exotoxin produced by Clostridium tetani. The current vaccine against tetanus is based on inactivated tetanus toxin (TeNT). To develop a recombinant TeNT vaccine suitable for replacement of full-length tetanus toxoid (TT) vaccine for use in humans, a recombinant non-tagged isoform of the Hc domain of the tetanus toxin (THc) was expressed in Escherichia coli and purified by sequential chromatography steps. The immunogenicity and protective effect of the THc antigen were explored and compared with those of TT in Balb/c mice. The THc-based subunit vaccine provided complete protection against TeNT challenge following a high dosage as a toxoid vaccine. While the anti-THc and neutralising antibody titres were higher for the THc-based vaccine than the TT vaccine because protective epitopes are located on the THc domain. Frequency- and dose-dependent immunoprotection were also observed in THc-immunised mice. Mice immunised with one injection of 1 µg or 4 µg THc antigen were completely protected against 102 or 103 50% mouse lethal dose (LD50) of TeNT, respectively. Furthermore, the THc protein was found to recognise and bind to ganglioside GT1b in a dose-dependent manner, and anti-THc sera antibodies also inhibited binding between THc and GT1b. Antigen on the form of recombinant non-tagged THc domain expressed in E. coli achieved strong immunoprotective potency, suggesting that it could be developed into a candidate subunit vaccine against tetanus as an alternative to the current TT vaccine.


Assuntos
Toxina Tetânica , Vacinas Sintéticas , Animais , Anticorpos Neutralizantes , Gangliosídeos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Tétano , Toxoide Tetânico , Vacinas de Subunidades
19.
Vaccine ; 38(14): 2978-2983, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32113807

RESUMO

Botulinum neurotoxins (BoNTs) are highly toxic proteins that mediate their effects by binding to neuronal receptors and block the neutralizing ability of therapeutic antibodies. Vaccination is currently the most effective strategy to prevent botulism. In this study, a series of recombinant functional domain antigens of BoNT/A were prepared and identified, and their immunoprotective efficacies were explored and compared. Our results showed that all antigens produced strong humoral immune responses, although their protective effects against the toxin were different. Only the Hc and HN-L antigens produced strong protective effects and afforded complete immunoprotection. In addition, the combined vaccine groups showed that there was no synergistic effect on immune responses after antigen combination, suggesting that the integrity of the toxin antigen or domain is crucial to the immune effects. Studies of the dose-dependent immunoprotective effects further confirmed that the Hc domain antigen afforded more effective protective potency than the HN-L antigen, equivalent to the immune effect of the full-length toxin (Hc + HN-L combination group). Overall, our results demonstrated that the Hc domain elicited a strong protective immune response and also provided basic data and theoretical support for the development of Hc-based BoNT/A subunit vaccine. Therefore, the receptor binding domain Hc is implicated as a promising target antigen of the BoNT/A recombinant subunit vaccine as an alternative to the toxoid vaccine.


Assuntos
Vacinas Bacterianas/imunologia , Toxinas Botulínicas Tipo A/imunologia , Botulismo , Clostridium botulinum , Imunogenicidade da Vacina , Animais , Anticorpos Antibacterianos/sangue , Botulismo/prevenção & controle , Feminino , Imunidade Humoral , Camundongos Endogâmicos BALB C , Testes de Neutralização , Vacinas Sintéticas/imunologia
20.
Virology ; 543: 20-26, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32056843

RESUMO

Human adenovirus serotype 7 (HAdV-7), belonging to species B, has caused severe lower respiratory tract diseases and even deaths recently. However, no adenovirus vaccine or therapeutic is available thus far. In this study, a HAdV-7-specific human monoclonal antibody (HMAb), 3-3E, isolated from single plasma cells obtained from the peripheral blood mononuclear cells of HAdV-7-infected patients showed potent HAdV-7 neutralization activity. The results showed HMAb 3-3E only binds to the hexon protein of intact HAdV-7 or the recombinant hexon protein and it does not bind to other intact virion particles. This could mean the antibody recognizes a conformational epitope of the hexon protein. Further, HMAb 3-3E potently neutralized HAdV-7 in vitro at low concentrations. In vivo studies showed HMAb 3-3E protected from HAdV-7 infection in a murine model. Therefore, HMAb 3-3E is promising as a safe and effective prophylactic and therapeutic treatment for HAdV-7 infection.


Assuntos
Infecções por Adenovirus Humanos/imunologia , Adenovírus Humanos/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/imunologia , Vírion/imunologia , Adenovírus Humanos/genética , Adenovírus Humanos/metabolismo , Animais , Linhagem Celular , Mapeamento de Epitopos , Epitopos/imunologia , Expressão Gênica/genética , Humanos , Leucócitos Mononucleares/imunologia , Camundongos , Camundongos SCID , Proteínas Recombinantes/genética , Sorogrupo , Vírion/genética , Vírion/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...